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Abstract

This paper presents an improvement to the stochastic progressive photon mapping (SPPM), a method for robustly
simulating complex global illumination with distributed ray tracing effects. Normally, similar to photon mapping
and other particle tracing algorithms, SPPM would become inefficient when the photons are poorly distributed.
An inordinate amount of photons are required to reduce the error caused by noise and bias to acceptable levels.
In order to optimize the distribution of photons, we propose an extension of SPPM with a Metropolis-Hastings
algorithm, effectively exploiting local coherence among the light paths that contribute to the rendered image. A
well-designed scalar contribution function is introduced as our Metropolis sampling strategy, targeting at specific
parts of image areas with large error to improve the efficiency of the radiance estimator. Experimental results
demonstrate that the new Metropolis sampling based approach maintains the robustness of the standard SPPM
method, while significantly improving the rendering efficiency for a wide range of scenes with complex lighting.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Efficient computation of global illumination is important for
rendering realistic synthetic scenes in computer graphics.
Recent years have witnessed significant progress in solv-
ing the rendering equation introduced by Kajiya [Kaj86]
for different types of lighting [DBBS06]. Unbiased Monte
Carlo methods have become a popular solution to the ren-
dering equation without any approximation. However, they
cannot efficiently handle some complex illumination settings
including specular-diffuse-specular (SDS) paths. For exam-
ple, handling specular reflection/refraction of caustics from
small light sources is particularly difficult for the unbiased
methods, as analyzed in Hachisuka et al. [HOJ08].

Since SDS paths are common in light transport within re-
alistic optical systems and natural scenes, it is greatly desir-
able to efficiently compute such illumination for industrial
purposes, such as lamp manufacture and building design.
Progressive photon mapping (PPM) [HOJ08] is considered

the first biased technique to robustly solve this issue with
a bounded memory consumption. Compared with the nor-
mal photon mapping [Jen96], PPM is capable of computing
the correct radiance (e.g., detailed caustics) without having
to store the photons. Stochastic progressive photon mapping
(SPPM) [HJ09] extends PPM to simulate global illumination
with distributed ray tracing effects [CPC84], while maintain-
ing the robustness of PPM. However, both PPM and SPPM
approaches would become highly inefficient when the pho-
tons are poorly distributed, especially when only a small part
of the photons can arrive at visible regions. This situation is
not uncommon in practice. Normally, photons are emitted
randomly from light sources and deposited as they interact
with scene surfaces, but most of them may be invisible from
the viewpoint (Figure 1). In addition, the visible photons are
unevenly distributed due to occlusion. The photon density in
some visible regions tends to be relatively low (Figure 2).
Without sufficient photons, the radiance error of these image
areas is inefficient to reduce to acceptable levels.
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Figure 1: Room with difficult visibility issues. Using uniform random sampling of photons, the SPPM method performs poorly
since only 5.0% of the light paths can arrive at visible regions. Thanks to local exploration, the percentage of the visible light
paths increases to 53.3% using Metropolis sampling of photons. Therefore, our Metropolis sampling approach (right) used in
SPPM method produces less noise compared with the uniform random sampling (left) in the same rendering time.

In this paper, we present a simple extension of SPPM with
a Metropolis-Hastings approach [MRR∗53, Has70] to opti-
mize the distribution of photons. The main advantage of the
Metropolis sampling is that the visible light paths that con-
tribute to the results can be locally explored by mutating the
current visible light path. In our Metropolis sampling strat-
egy, we introduce a well-designed scalar contribution func-
tion, targeting at specific parts of the image areas with large
error. As expected, experimental results show that the per-
centage of the visible light paths that contribute to the re-
sult dramatically increases for a wide range of scenes with
complex lighting. Our sampling method can also adaptively
trace more photons to the problematic areas with low pho-
ton density. Therefore, our approach significantly improves
the rendering efficiency compared with the standard SPPM
method using uniform random sampling of photons.

2. Related Work

Unbiased Ray Tracing The unbiased ray tracing methods,
such as path tracing [Kaj86] and bi-directional path trac-
ing [LW93, VG95], are the general-purpose solutions to the
rendering equation using a large number of Monte Carlo
samples. In order to reduce the number of samples, sev-
eral adaptive rendering methods [HJW∗08,ODR09,SSD∗09,
ETH∗09,CWW∗11] have been developed to efficiently sim-
ulate the distributed ray tracing effects. Unfortunately, these
methods cannot robustly simulate SDS paths.

The reuse of light paths is another adaptive alternative of
exploiting useful light paths to render complex illumination
effects. Metropolis Light Transport (MLT) [VG97] adopts
Metropolis sampling as the sampler for path tracing. Once
high contribution paths are found, nearby paths with high
contribution will be likely to be explored as well. Then sev-
eral algorithms [CTE05,LFCC07,KKK09] were proposed to
enhance the MLT approach. Nevertheless, all these methods
are still inefficient in rendering SDS paths from small light
sources (e.g., point lights and directional lights).

The original MLT approach has been extended in dif-
ferent ways. The start-up bias problem was analyzed in
[SKDP99]. Kelemen et al. [KSKAC02] proposed a simplifi-
cation of MLT which increases the acceptance rate by using
a user-defined mutation strategy. Hoberock and Hart [HH10]
showed that the scalar contribution function in the MLT
method can be similarly programmable. In our method, we
introduce a well-designed scalar contribution function as our
Metropolis sampling strategy, which is demonstrated to be
compatible with the standard SPPM approach [HJ09].

Photon Mapping Photon mapping [Jen96] is one of the
popular particle tracing algorithms, which involves a photon
scattering pass and a final gathering pass to efficiently simu-
late global illumination. This method robustly handles SDS
paths, since it can loosely connect SDS paths by means of
photon density estimation. However, photon mapping would
suffer from insufficient photons due to bounded memory, re-
sulting in the blurring of sharp features. To address this issue,
progressive photon mapping (PPM) [HOJ08] was presented
as a progressive refinement extension without storing the
photons, making it possible to converge to the correct solu-
tion. Stochastic progressive photon mapping (SPPM) [HJ09]
computes the average radiance over a region for robustly ren-
dering distributed ray tracing effects. However, both PPM
and SPPM approaches tend to be inefficient since the pho-
tons are likely to be poorly distributed. To improve pho-
ton tracing, Metropolis photon sampling [FCL05] was in-
troduced to target at important light paths, producing better
photon distribution. Unfortunately, this method fails to solve
SDS paths from small light sources, because it uses sam-
pling on the exact path space to specify the important light
paths. A recent approach that is most related to our work
is the adaptive photon tracing algorithm [HJ11], which uses
photon path visibility as the importance function. In contrast,
our scalar contribution function further considers the uneven
distribution of the visible photons. Therefore, our method is
more efficient to handle this kind of illumination settings.

submitted to Eurographics Symposium on Rendering (2011)



J. Chen & B. Wang & J.-H. Yong / Improved Stochastic Progressive Photon Mapping with Metropolis Sampling 3

3. Overview

3.1. Stochastic progressive photon mapping

Stochastic progressive photon mapping (SPPM) [HJ09] is
a multi-iteration method that converges to the correct radi-
ance by accumulating statistics of photons over a region.
There are two passes in each iteration. The first distributed
ray tracing pass traces sample rays from camera and updates
all the non-specular hit points for each region. The follow-
ing photon tracing pass traces photons from the light sources
and then updates statistics over the regions. In the i-th iter-
ation, the radiance estimator approximates the average radi-
ance value L(S) over the region S (e.g., a pixel footprint) as:

L(S)≈ τi(S)
Ne(i)πRi(S)2 , (1)

where τi(S) is the accumulated flux times BRDF over the
region S, Ne(i) is the number of emitted photons after i it-
erations, and Ri(S) is the shared search radius. The shared
statistics over the region S is updated as:

Ni+1(S) = Ni(S)+αMi(~xi) (2)

Ri+1(S) = Ri(S)

√
Ni(S)+αMi(~xi)

Ni(S)+Mi(~xi)
(3)

φi(~xi, ~wi) =
Mi(~xi)

∑
p=1

fr(~xi, ~wi, ~wp)φp(~xp, ~wp) (4)

τi+1(S) = (τi(S)+φi(~xi, ~wi))
Ri+1(S)

2

Ri(S)2 , (5)

where Ni(S) is the accumulated photon count within the
search radius, α∈ (0,1) is a user-defined parameter (α = 0.8
in this paper), ~xi is a hit point that is generated within the re-
gion S by distributed ray tracing, Mi(~xi) is the photon count
within the radius during the iteration i, ~wi is the outgoing di-
rection from the hit point ~xi, fr is the BRDF, φp(~xp, ~wp) is
the flux of photon p, ~wp is the incoming direction of photon
p, and φi(~xi, ~wi) is the accumulated flux times BRDF during
the iteration i. More specific issues are discussed in [HJ09].

3.2. SPPM with Metropolis sampling

Our method rarely requires any modification to the updating
procedure of the statistics, but adopts a Metropolis sampling
to optimize the photon distribution. During the photon trac-
ing pass, each path X is a sequence of points x0x1...xk, where
x0 is on the light source, the rest are on the scene surfaces,
and k≥ 1 is the path length. For each path we design a novel
scalar contribution function I(X), and Metropolis sampling
generates path Xi with probability proportional to I(Xi):

P(Xi) =
I(Xi)

b
, (6)

where b=
∫

Ω
I(X)dΩ. In practice, we generate a sequence of

paths X0, X1, ..., XN , where each Xi is obtained by a mutation
to the preceding path Xi−1. The acceptance probability of the
mutation depends on the scalar contribution functions of the
new and old paths. As the path Xi is sampled, the flux of each
photon along this path needs to be normalized as:

φ
′

p(~xp, ~wp) =
φp(~xp, ~wp)

P(Xi)
= φp(~xp, ~wp)

b
I(Xi)

. (7)

Finally, the flux is accumulated to the corresponding regions
using Equation (4) with the expected values enhancement
[VG97]. We summarize this method in Algorithm 1.

Algorithm 1: Metropolis sampling for SPPM

Estimate the normalized constant b =
∫

Ω
I(X)dΩ;1

X0← InitialSample();2

I(X0) = PhotonTracing(X0);3

for i = 1 to N do4

X
′
= Mutate(Xi−1);5

I(X
′
) = PhotonTracing(X

′
);6

a = AcceptProbability(X
′
|Xi−1);7

if Random() < a then8

Xi = X
′
; I(Xi) = I(X

′
);9

end10

else11

Xi = Xi−1; I(Xi) = I(Xi−1);12

end13

RecordSample(Xi−1, (1−a)b/I(Xi−1));14

RecordSample(X
′
, ab/I(X

′
));15

end16

4. Metropolis Sampling for SPPM

4.1. Photon distribution and rendering efficiency

Using uniform random sampling, the SPPM method samples
light paths without considering the viewpoint and scene fea-
tures, hence easily resulting in poor distribution of photons.
One problematic case is that most of the light paths can-
not deposit photons in the visible regions (Figure 1), lead-
ing to too much unnecessary computation time for tracing
invisible photons. This is common in scene configurations
such as illumination coming through a small gap. Another
case is the uneven distribution of visible photons due to oc-
clusion, causing the result error of some image areas to be
large. Hachisuka et al. [HJJ10] presented an error estimation
framework for PPM. However, error estimation for SPPM
remains uninvestigated as far as we know. Based on the ex-
periments, we can observe that there are usually two kinds
of image areas where the error tends to be large. One are
the areas with distributed ray tracing effects, and the other
one are the areas with low photon density (Figure 2). We do
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not consider the former one since SPPM can robustly han-
dle the distributed ray tracing effects. For the latter one, in
order to reduce the error due to noise using limited photons,
it requires to increase the search radius for photon lookups.
But this would increase the error due to bias in return, blur-
ring illumination details. In this case, the SPPM method also
becomes inefficient. In order to improve the rendering effi-
ciency, our adaptive method attempts to optimize the photon
distribution considering the above two cases simultaneously.
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Figure 2: Bulb scene with uneven photon distribution. Us-
ing uniform random sampling, the photon density in the
red highlighted areas is relatively low (left in the second
row). While the photon density in these areas significantly
increases since our Metropolis sampling method adaptively
traces more photons there (right in the second row). There-
fore, our adaptive photon tracing method (the red close-up)
is more efficient to reduce the error in these areas compared
with uniform random sampling (the green close-up).

4.2. Scalar contribution function

Metropolis sampling remains unbiased for any scalar contri-
bution function I(X), but a poor choice of I(X) would re-
duce the rendering efficiency. The original MLT algorithm
[VG97] samples light paths with probability proportional
to brightness. Hoberock and Hart [HH10] showed that this
luminance-based function is undesirable since it would lead
to a poor estimation for common scenes. Based on the analy-
sis in Section 4.1, we design the scalar contribution function
based on the photon distribution of the scenes.

We generally start by coarsely tracing light paths using
uniform random sampling and estimating a photon density
map (left in Figure 3). Then we remove the extreme low and
high values by clamping each value v between vlow and vhigh
(e.g., 5% and 60% of the range, respectively), and further

remove the high spatial frequencies using a low-pass filter
(middle in Figure 3). Finally, we transform it to a scalar im-
portance map (right in Figure 3):

s =

{
1 if v≥ vmid ,

1+β(e1−v/vmid −1) otherwise,
(8)

where vmid = (vlow + vhigh)/2, and β > 0 is a user-supplied
parameter. Intuitively speaking, this equation reads as fol-
lows. The scalar variable s remains the same when the cor-
responding photon density tends to be sufficient (v ≥ vmid).
If the photon density would be insufficient (v < vmid), the
variable s increases as the photon density v becomes lower.
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Figure 3: The photon density map (left) is clamped and fil-
tered to a smoothed map (middle), and then transformed to
a scalar importance map (right). Based on the scalar impor-
tance map, Metropolis sampling can trace more photons to
the areas with low photon density, as shown in Figure 2.

We use the scalar importance map to design the scalar
contribution function I(X) for each path X = x0x1...xk:

I(X) =

0 if k = 0,
k

max
i=1
{V (xi)s(xi)} if k > 0,

(9)

where V (xi) is the visibility function of point xi: V (xi) = 1
if xi is visible from the viewpoint, and V (xi) = 0 otherwise.
When xi is visible, s(xi) is the pixel value corresponding to
xi in the scalar importance map. Thus, I(X) is determined
by the visible point that is on path X and with the lowest
photon density. This is desirable. When none of these points
is visible, I(X) = 0 and Metropolis sampling would refuse
to sample its neighboring light paths. In this way, the ratio
of the visible light paths can be improved. When some of
the points are at the visible locations where the photon den-
sity is low, I(X) is accordingly large and the path X can be
locally explored by Metropolis sampling, tracing more pho-
tons to the local areas with low photon density (see Figure
2). However, it should be noted that increasing I(X) for some
areas would be at the cost of increasing error in other areas.
Therefore, we cannot increase I(X) for the problematic ar-
eas without limit. In practice, we set β = 10 in Equation (8)
to achieve a good trade-off for the examples in this paper.

The scalar contribution function can be further tailored to
some user-specified light paths Xs to enhance specific light
transport effects without introducing additional bias:

I
′
(Xs) = λI(Xs), (10)

where λ > 1 is a user-supplied parameter. For example, we
use it to emphasize the caustic effects in this paper with λ =
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4 when the light paths Xs generate visible caustic photons
after they interact with specular surfaces.

4.3. Implementation details

Initialization: In this step, we need to compute the integral
of the scalar contribution function b =

∫
Ω

I(X)dΩ. We first
use 4 iterations of SPPM to compute the scalar importance
map using Equation (8). Then we use 4 more iterations to es-
timate b≈ 1

n ∑
n
i=1 I(Xi), where n is the path count, and I(Xi)

for each path Xi can be computed using Equations (9) and
(10). After that, we start the Metropolis sampling process.

Start-up bias: The initial path X0 is required to be sampled
with probability proportional to I(X). Otherwise, it would
lead to the start-up bias. We adopt the initial sample select-
ing strategy of the MLT implementation in PBRT [PH10]
to avoid this problem. We first generate a uniform random
number between 0 and the contribution sum computed in
the initialization step, and then loop over the computed light
paths again until the one whose contribution causes the ac-
cumulated contribution sum to pass the value is found. This
sample can be an appropriate initial path X0.

Mutation strategy: We use the mutation rule described by
Kelemen et al. [KSKAC02] for our mutations in the path
space. This mutation rule has two kinds of mutations, global
mutation and local mutation, and a user-supplied parameter
ε as the probability of carrying out the global mutation. The
global mutation is to discard the current light path and uni-
formly generate a new one at random. The local mutation is
to perturb the current path X = x0x1x2...xk as:

x
′

i = xi± s2e−log(s2/s1)ξ, (11)

where ξ is a uniform random number in [0,1] and the sam-
ples are expected in [s1,s2]. In the experiments, we set ε =
0.1, s2 = 16s1, s2 = 1/1024 for point x0 on the light source,
and s2 = 1/64 for the rest points. We set a smaller mutation
for x0 since it could be easily perturbed for the area lights.

Acceptance probability: Since the above mutations are
symmetric, the transition probability density is the same in
both directions, i.e., T (X

′
|Xi−1) = T (Xi−1|X

′
). Therefore,

the acceptance probability can be computed as:

a(X
′
|Xi−1) = min{1, I(X

′
)T (Xi−1|X

′
)

I(Xi−1)T (X
′ |Xi−1)

}

= min{1, I(X
′
)

I(Xi−1)
}.

(12)

Recording the expected sample values: We use the ex-
pected values method [VG97] to enhance the basic Metropo-
lis algorithm. We record the flux of the photons along both
paths Xi−1 and X

′
to the corresponding regions using Equa-

tion (4) with different weights. The weights are (1− a) for
Xi−1 and a for X

′
, where a is the acceptance probability. As

a result, we can achieve a smoother rendered result.

5. Combination with Direct Lighting

When simulating direct illumination, the direct lighting
method is usually more efficient than the SPPM approach
(the first row of Figure 4). Our method can be combined with
direct lighting for more efficiently rendering global illumi-
nation. When the scene with lighting is dominated by direct
illumination, we would like to compute it using direct light-
ing in the distributed ray tracing pass, and use the stochastic
radiance estimator to only approximate the indirect illumi-
nation. In this case, our Metropolis sampling method can
adaptively trace more indirect photons to compute the in-
direct illumination, which is often highly inefficient to sim-
ulate using the unbiased methods, such as the caustic effects
(the close-up in the second row of Figure 4). We can see that
the percentage of the light paths that create visible indirect
photons in the Torus scene (Figure 4) significantly increases
from 4.6% to 72.9%. Therefore, the combined method is
more efficient to simulate global illumination compared with
the standard SPPM approach.

Figure 4: Torus scene rendered using our method combined
with direct lighting. In the first row, direct lighting (the red
close-up) is more efficient than the SPPM method (the green
close-up) to simulate direct illumination using the same ren-
dering time. In the second row, since Metropolis sampling
traces significantly more indirect photons to simulate in-
direct illumination, the combined method produces higher
quality results (the red close-up) compared with the standard
SPPM method (the green close-up).
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6. Results

We implemented our method in the PBRT system [PH10]
by modifying the standard SPPM approach [HJ09] to use
our Metropolis sampling technique. We focused on compar-
ing our adaptive sampling method used in SPPM with the
uniform random sampling in the same rendering time. Since
our method holds the robustness of SPPM, readers can re-
fer to [HOJ08, HJ09] for more comparisons with the unbi-
ased methods and the normal photon mapping. All the test
scenes were rendered on a 2.93 GHz Intel Core i7 X870 us-
ing one core. We used 0.5M emitted photons per iteration
in all the scenes except for the Killeroos and Villa scenes.
In the Killeroos and Villa scenes, we instead use the same
number of iterations but different numbers of emitted pho-
tons per iteration for comparisons. In this case, we still get
more visible photons with our method in the same rendering
time. Table 1 summarizes the statistics for the test scenes.

Table 1: Rendering statistics for our test scenes. Both uni-
form random sampling and our adaptive method used the
same rendering time. In both columns of uniform sampling
and our method, the left is the total number of iterations,
and the right is the percentage of the visible light paths.
For the first four scenes, we use the same number of emit-
ted photons per iteration; and for the last two scenes, we use
the same number of iterations but different numbers of emit-
ted photons in both methods. Our method usually performs
a smaller number of iterations or uses smaller numbers of
emitted photons per iteration, since the average length of the
visible paths is often greater than that of the whole paths.

Scene Time/min Uniform Our Method
Room 120 960 / 5.0% 563 / 53.3%
Bulb 63 234 / 25.8% 185 / 73.5%
Torus 37 209 / 11.7% 104 / 72.9%
Cornell Box 26 142 / 82.1% 128 / 92.8%
Killeroos 35 128 / 22.4% 128 / 69.2%
Villa 653 625 / 0.014% 625 / 30.9%

Figure 1 shows a room with difficult visibility configu-
rations. Only a small portion of the light paths can nor-
mally contribute to the rendered image. The uniform sam-
pling method samples light paths without considering the
viewpoint. As a result, it performs inefficiently since only
5.0% of the paths can trace photons to the visible regions. In
contrast, the decisive advantage of our Metropolis sampling
method is its ability to handle the difficult visibility settings.
Due to the local exploration of the visible light paths, the
percentage of the visible paths in our method increases to
53.3%. Therefore, our adaptive method used in SPPM gen-
erates visually smoother results compared with the uniform
random sampling. Our method also has lower numerical er-
ror compared to uniform photon tracing in the same render-
ing time, as demonstrated in Figure 5. The graph in Figure 5

shows that our method converges to the ground truth faster
than the uniform sampling using the same rendering time.

Figure 2 shows a bulb illuminating a substrate floor with
bump mapping effects. The uniform sampling method traces
photons without considering the scene features. Due to the
complex occlusion, the photon density in some regions
would be rather low (e.g., the photon density in the red high-
lighted areas is about 100 photons/pixel), causing the radi-
ance estimator to become highly inefficient. Our Metropolis
sampling method can also adapt to the local scene features.
In our method, more paths are tailored to deposit photons in
those problematic regions in the same rendering time (about
550 photons/pixel). In this way, our adaptive procedure can
be done globally (i.e., the percentage of the visible paths in-
creases from 25.8% to 73.5%), as well as locally, further
improving the convergence speed of the SPPM approach.

In Figure 4 our method is combined with direct lighting to
efficiently compute global illumination. Since direct lighting
can efficiently simulate direct illumination, our method is
merely used to compute indirect illumination. In this scene,
the percentage of the light paths that create visible indirect
photons dramatically increases from 4.6% to 72.9%. While
the standard SPPM with uniform sampling uses 11.7% of
the light paths to simulate global illumination. As a result,
our method generates higher quality results compared with
the standard SPPM method in the same rendering time.

Figure 6: Killeroos scene with motion blur and depth-of-
field effects. Our method maintains the robustness of SPPM
to simulate the distributed ray tracing effects, while signifi-
cantly improving the rendering efficiency (the red close-up)
where SPPM with uniform sampling tends to be inefficient
(the green close-up) due to the insufficient photons.

Figure 6 shows that our method maintains the robustness
of SPPM in simulation of the distributed ray tracing effects
including motion blur and depth-of-field. We combine our
method with direct lighting to render this scene. We use the
same number of iterations in both methods. For comparisons
in the same rendering time, we trace 0.5M and 1.1M emitted
photons per iteration for our adaptive method and uniform
sampling, respectively. The percentage of the paths that gen-
erate visible indirect photons increases from 4.7% to 69.2%
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Figure 5: The numerical analysis of the rendering error in the Room scene. Left: color coded error images of Figure 1. Right:
the average relative error of the progressive rendered results using uniform random sampling and our sampling method. The
graph shows that our adaptive method converges to the ground truth faster than the uniform random sampling.

in our method. In contrast, only 22.4% of the total paths
contribute to the rendered image using uniform sampling.
Therefore, our improved method provides benefits to render
complex global illumination as well as maintains the robust-
ness of the standard SPPM approach.

Figure 7: Villa house illuminated indirectly by an infinite
skylight and a discoid daylight outdoors. Using uniform
sampling, only 0.014% of the light paths can arrive at the
visible regions, causing SPPM to become extremely ineffi-
cient to render a smooth result (the green close-up). Thanks
to the path reuse, the percentage of the visible light paths
increases to 30.9% using our adaptive method, dramatically
improving the rendering efficiency (the red close-up).

The Villa scene with complex geometry and illumination
in Figure 7 is a particularly challenging scene for both biased
and unbiased algorithms. There is no direct illumination in-
side the house, and all the light paths that arrive at the in-
door regions must first follow specular bounces through the
glass windows, making the unbiased methods extremely in-
efficient. Due to the difficult visibility settings, the SPPM
method with uniform random sampling also becomes in-
efficient to render a high-quality smooth result, since only
0.014% of the light paths can create photons in the visible re-
gions. In contrast, the percentage of the visible light paths is

dramatically improved to 30.9% using our Metropolis sam-
pling strategy. For the equal time comparisons, we trace
2M and 28.6M emitted photons per iteration for our sam-
pling method and uniform sampling, respectively. The result
in Figure 7 demonstrates that our adaptive method used in
SPPM significantly improves the rendering efficiency com-
pared with the uniform sampling, especially for the complex
scenes with difficult visibility settings.

7. Discussion

7.1. Validation of SPPM with adaptive sampling

One challenge for SPPM combined with Metropolis sam-
pling is that the scalar contribution function changes as more
samples are added. A visible light path would become in-
visible in the following iterations, because the shared search
radii are gradually reduced. Therefore, it is difficult to ensure
the unbiasedness since the precomputed integral b in Equa-
tion (6) may be inconsistent during the rendering process.
To avoid this issue, we use a constant radius instead of the
shared radius for each region to decide whether a light path
is visible or not. In our implementation, the constant radius
of each region is equal to the initial shared radius, which is
approximate to a 3-pixel width using ray differentials.

Another challenge is that the original SPPM method up-
dates the statistics of photons based on the assumptions
including using non-adaptive photon tracing. However, we
show that the updating procedure of the statistics is still valid
using our adaptive photon tracing algorithm in Appendix A.
Therefore, we claim that the SPPM method combined with
our Metropolis sampling is provably valid, which can also
be verified in the experimental results.

7.2. Limitations

Compared with the recent adaptive photon tracing approach
[HJ11], our sampling method can adapt to the local scene
features, but at the cost of manual tweaking the sampling
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parameters. A poor choice of the parameters could instead
reduce the rendering efficiency. Nevertheless, the parameters
are intuitive and simple to be tailored to the scene features.
We can see that our sampling method is roughly equivalent
to [HJ11] if we do not locally consider the photon distri-
bution of the scenes (i.e., the scalar contribution function
I(X) = 0, if X is invisible; and I(X) = 1, if X is visible).

Our adaptive method can improve the rendering efficiency
when the photons are poorly distributed (especially for the
case of difficult visibility settings). However, it does not pro-
vide benefits if most of the paths are visible and the pho-
ton distribution is roughly even, as shown in Figure 8. Our
method produces similar quality results compared with the
uniform random sampling, but at the cost of an additional
small runtime overhead due to the precomputation.

Figure 8: Cornell box scene for image quality comparison
between uniform random sampling (left) and our method
(right). The results are practically identical as 82.1% of the
paths are visible and the photon distribution is roughly even.

8. Conclusions and Future Work

We have presented an improvement to the SPPM approach
[HJ09] by adopting a Metropolis sampling to optimize the
photon distribution. In our method, we introduce a well-
designed scalar contribution function as the Metropolis sam-
pling strategy, effectively exploiting the local coherence
among the light paths that trace photons to the visible re-
gions. Using the same rendering time, the percentage of the
visible light paths can be distinctly improved in our method.
Furthermore, more photons can be locally traced to the prob-
lematic regions where the error tends to be large to improve
the rendering efficiency. In addition, we would like to com-
bine our method with direct lighting for further performance
enhancements. The results show that our Metropolis sam-
pling based method is more efficient than the standard SPPM
using uniform random sampling for a wide range of scenes,
while maintaining the robustness of the SPPM method in
simulating complex global illumination.

Since the scalar contribution function in our Metropolis
sampling is empirically based on the photon distribution, it
may be unable to accurately estimate the rendering error.

For future work we would like to introduce a more accu-
rate error estimation approach for SPPM, based on which
we can design a more robust scalar contribution function as
our Metropolis sampling strategy. Besides adaptively sam-
pling the light paths, we would also like to adaptively sam-
ple the hit points in the distributed ray tracing pass for fur-
ther performance enhancements. Finally, we expect that our
adaptive sampling method can be used for other particle trac-
ing algorithms, such as the normal photon mapping [Jen96],
PPM [HOJ08] and the new formulation of PPM [KZ11], for
improving the sampling efficiency.
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Appendix A: Validity of updating photon statistics using
our Metropolis sampling

According to the assumptions including using non-adaptive
photon tracing, the following equation can be derived:

Ri+1(~x) = Ri(~x)

√
Ni(~x)+αMi(~x)
Ni(~x)+Mi(~x)

= Ri(~x)CP, (13)

where CP is independent of ~x. Then the updating procedure
of the photon statistics, i.e. Equations (3) and (5), can be de-
rived based on Equation (13) (see [HJ09] for more details).

In our adaptive sampling method, we use a constant radius
for each region to decide whether a light path is visible or
not. That means the adaptive photon tracing is independent
of the reduction of the shared search radius. Although using
Metropolis sampling, we claim that the new created photon
density for each iteration is approximately locally constant if
a sufficient number of photons are traced in each iterations.
According to the derivations in [KZ11], we can get

Ri+1(~x) = Ri(~x)

√
i+α

i+1
= Ri(~x)C

′

P, (14)

where C
′

P =
√

i+α

i+1 is also independent of~x. This means that
the updating procedure of photon statistics for SPPM using
our adaptive sampling technique is still theoretically valid.
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